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An extension of a simplified method for molecular correlation energy calcula- 
tions to molecules containing third row atoms is presented. In addition to the 
use of pseudo-potentials in the calculations, the consequences of this extension 
on the different components of the energy partition which is the basic idea 
of the method, is analysed. Particular emphasis is placed on the specific role 
played by the 3d orbitals in each of the energy components. First, at the 
zeroth order, the energy is found to be very sensitive to the optimization of 
the 3d polarization functions. Secondly, the internal correlation energy, calcu- 
lated by CI, requires the optimization of distinct 3d correlation orbitals to 
describe adequately the strong near-degeneracy effects that occur within the 
valence space. Finally it is shown that the 3d orbitals contribute partially to 
the non-internal correlation energy and that, the "atoms-in-molecule" struc- 
tures corresponding typically to all-external contributions are negligible. The 
concept of  error energy is introduced in place of the non-internal correlation 
energy: it includes the relativistic contributions within the semi-empirical 
tables. Such tables are presented for second row atoms and for the chlorine 
atom. From these tables, predicted values for some atomic term energies, 
experimentally undetermined, are derived. The methodological tests are 
limited here to the chlorine atom which is chosen for further applications in 
the next paper of this series. The conclusions concerning the applicability of 
the method to third row atoms are however quite general. 
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I. Introduction 

In a series of  recent papers [1-6] we have developed and extensively tested a 
simplified method for molecular correlation energy calculations. The basic idea 
of the method is that the large configuration interaction expansions, generally 
encountered in the traditional approaches of  the correlation problem, can be 
avoided by defining an appropriate partition of the correlation energy. The two 
components of  the partition have been shown to be calculable in an economical 
way: the first one (internal correlation energy) is calculated by means of 
M C S C F / C I  calculations performed on short configurational expansions and the 
second one (non-internal correlation energy) is determined by a semi-empirical 
"atoms-in-molecule" approach.  

Up to now various tests and applications have been presented with successful 
comparison with other ab initio calculations and with experimental work. These 
results concern the calculation of potential energy hypersurfaces [4], dissociation 
and term energies [1, 2, 3, 4], heats of reactions [5], equilibrium geometries and 
vibrational frequencies [2, 4]. The systems considered so far were limited to atoms 
of the second row and hydrogen atoms, with typically up to 4 second row atoms 
and up to 30 electrons. 

The success encountered in this previous work encourages us to extend the 
application area of  the method to molecules containing third row atoms and to 
show, as suggested by preliminary results [6], that this extension does not affect 
the reliability and the economical character of  the method. Although the develop- 
ment of the methodology is quite general, and therefore independent of  the choice 
of  a particular atom, we will herein restrict ourselves to numerical applications 
involving the chlorine atom only. This choice is governed by the chemical 
importance of most molecules containing this atom. 

A first paper  (I) is devoted to the methological implications of  the extension and 
to the determination of the necessary numerical data for the chlorine atom. A 
second paper  (II)  presents test calculations on chlorinated molecules as CIO, 
HC1, HC1 § and NC1. 

2. The simplified method for molecular correlation energy calculations 

In this section we give the guidelines of  the method presented in detail in the 
previous papers [1-6]. The basic concepts of  the method are: the partitioning of 
the orbital space into valence I and non-valence spaces and the subsequent 
classification of the orbital excitations (limited to the first order of perturbation, 
i.e. the biexcitations) into two classes: i) excitations within the valence space, 
corresponding to internal correlation energy contributions and ii) biexcitations in 
which one or two components  leave the valence space, referred to as non-internal 
correlation energy contributions. An adequate choice of  the zeroth-order 
wavefunction (~0) is of  course crucial in order to ensure a proper description 

The valence space is also referred to as the "H.F. sea". [7] 
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of the considered molecular process. This generally implies the use of  a multicon- 
figurational zeroth-order wavefunction [2]. 

The total energy of the system is therefore approximated by the following 
partition: 

I NI 
E ~ E 0 + ECORR q- ECORR (1)  

where Eo refers to the energy of the zeroth-order wavefunetion ECORRI and ECoRRNI 
to the internal and non-internal correlation energies respectively. 

The size of the internal configuration space is relatively small so that a variational 
treatment (MCSCF/CI)  of  the internal correlation energy is possible. Oppositely, 
the very large size (in principle infinite) of the non-internal configuration space 
justifies the use of a semi-empirical "atoms-in-molecule" approach for this part 
of the correlation energy. It consists of expanding the zeroth-order wavefunction 
into a linear combination of products of atomic eigenfunctions and of expressing 
the molecular non-internal correlation energy as a weighted sum of the corre- 
sponding atomic non-internal correlation energies, these last quantities being 
accurately determined by semi-empirical calculations. The procedure of this 
atomic expansion of  the molecular wavefunction is detailed in Ref. [2] and also 
discussed in Ref. [6]. 

3. Basis sets and pseudo-potentials 

3. t. Basis set requirements of  the method 

We have shown in previous work that each term of the partition ( 1 ) is characterized 
by a specific basis set effect, and have drawn the following conclusions: 

i) the zeroth-order energy Eo is very sensitive to basis set effects and therefore 
an extended basis set of double zeta plus polarization quality is required to 
produce meaningful results 
ii) the internal correlation energy i ECORR can be calculated in the same extended 
basis set as E0 providing that an iterative MCSCF/CI  procedure is performed 
to ensure a complete optimization of the valence orbitals. The computation cost 
of this iterative procedure rather suggests the use of a minimal basis set, which 
is, by definition, a purely valence basis and therefore does not require a major 
optimization [2]. 

The internal correlation energy is thus calculated as the CI energy increment 
obtained with the minimal basis set, i.e.: 

I 
ECORR : EMCo(min)/Ci(min) -- EMCo(min) 

where the notation MC0(min)/CI(min) has been introduced to designate the 
following two-step procedure: an MCSCF calculation is first performed on the 
zeroth-order multiconfigurational wavefunetion and secondly a CI calculation is 
performed on the complete internal configuration space with the orbitals optim- 
ized in the first step. The same minimal basis set is used in the two steps. 
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iii) The univocal correlation that exists between basis orbitals and atomic valence 
orbitals imposes the use of a minimal basis set for the non-internal "atoms-in- 
molecule" calculations. The same basis set as that for the internal correlation 
energy calculations is chosen. 

Up to now, Pople's standard basis sets have been used for second row atoms 
applications, i.e. the 6-31G(**) extended basis set [8] and the STO-3G minimal 
basis set [9]. However, as described in the next sections, the introduction of 
pseudo-potentials in our calculations requires the use of appropriate basis sets. 

3.2. Pseudo-potentials 

The increase in the number of core electrons with the third row atoms justifies 
the use of a pseudo-potential method in order to replace the "all-electron" 
variational problem by a "valence electrons" problem of reduced size. Extensive 
work in the literature has shown [10] that this approximation does not appreciably 
affect the accuracy of the results, as long as the molecular process under study 
does not disturb, of course, the electronic distribution of the inner shells. 

Here we have adopted the pseudo-potential approach developed by Durand and 
Barthelat [10a, 11]. The pseudo-potential operator has the following semi-local 
form: 

-Zo. 
Wps-  + ~ Wl(r)Pz 

r l 

where 

+ l  

P,= 2 
m =  1 

is the angular projection operator over the I th sub-space of spherical harmonics, 
and 

Wl(r)=e -~r2 ~ Ci, lr n','. 
i = 1  

Numerical values for the parameters appearing in this last expression are tabulated 
in Ref. [ 12]. 

3.3. Valence basis sets for pseudo-potential calculations 

In this work we have used the valence basis sets given in Ref. [12] optimized in 
atomic pseudo-potential calculations, with 4s and 4p gaussian primitives 
expansions. Two types of contractions are introduced: i) a complete contraction 
of the s and p components leading to a minimal basis set and ii) a contraction 
of the four s and p components into a (3 + l) expansion leading to a double zeta 
quality basis set. Polarization and correlation 3d functions are optimized in this 
work, as discussed in Sect. 5.1 and 5.2. 
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4. Programs 

The following programs have been used in this work: 

i) the ALIS package written by Ruedenberg et al. [13] to perform MCSCF/CI  
calculations. We have extended this program to pseudo-potential calculations by 
using the routines of the PSHONDO program [t4], that evaluate the mono- 
electronic integrals including the pseudo-potential contributions. CI calculations 
have been performed either by inserting [ 15] in ALIS the configurations generator 
program of the MELD CI program [16] or by using the Whitten's program [17] 
to set up the CI matrix together with the Davidson diagonalization routines [ 18]; 
ii) the program PSATOM [19] to optimize atomic basis sets; 
iii) the numerical atomic multiconfigurational program written by Froese-Fischer 
[20]; 
iv) the program DINGO written by us to perform non-internal or error energies 
calculations. 

5. Extension of the method to molecules containing third row atoms 

5. I. Zeroth order wavefunction 

In Sect. 3 we pointed out the necessity to use an extended polarized basis set to 
calculate the zeroth-order energy. Such basis sets can be derived from the tables 
of Ref. [12] (see Sect. 3.3), however polarization functions are to be optimized, 
since they are not available (except for Na, Si and P). 

Although the M-shell is occupied for third row atoms, several calculations [21] 
show that polarization effects can be efficiently introduced by d orbitals. In fact, 
f orbitals are mainly requested to polarize 6 orbitals which are never occupied 
in the zeroth-order wavefunctions used here. The technique that we have adopted 
for optimizing the polarization orbitals is to independently vary the different 
parameters of these orbitals and to fit their energy dependence by a polynomial 
expression. In Table 1 we present a comparison of the efficiency of different 
polarization functions at the SCF and MCSCF levels of calculation, in order to 
choose for further calculations, a basis set which presents a suitable compromise 
between the polarization energy lowering (AE) and the relative computation time 

Table 1. Influence of the d polarization functions on energy (AE) and relative 
CP calculation time (T re) 

ClO(2n) n.(O) n~(Cl,) aE(eV) L~ 

0 0 0.00 1.0 
l 1 1.67 6.3 SCF at 3.0 a.u. 
1 2 1.76 10.0 
2 2 1.80 18.0 

0 0 0.00 3.6 MCSCF at 3.2 a.u. 
1 2 (cont.) 0.97 11.0 
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Table 2. Parameters of the optimized 3d polarization functions 

J.-Y. Metz and J. Lieven 

Atom Optimized on El (2 cl a r  

CI C10 0.77 - -  1.0 - -  
0.77 0.25 1.0 0.5 

CI HCI + 0.80 0.21 1.0 0.8 
Cl HC1 0.70 0.21 1.0 0.6 
O C10 0.86 - -  1.0 - -  

N NCI 0.67 - -  1.0 - -  

a Contraction coefficients are given for the unnormalized orbitals 

(Tre0. The 3d functions are characterized by the number  o f  Gaussian primitives 
(ng) which are contracted (cont.) or not. On the basis o f  the results o f  Table 1, 
we decided to adopt  a one Gaussian 3d funct ion on the oxygen a tom and one 
two-primitives contracted funct ion on the chlorine atom. The introduct ion o f  a 
second Gauss ian  on the chlorine and not  on the oxygen a tom can be justified 
by the fact that  the corresponding polarizat ion energy lowering is a factor  of  two 
greater for the chlorine (0.09 eV) than for the oxygen (0.04 eV). This last value 
lies at the limit of  precision of  our calculated energy differences and does not 
justify the use o f  80% extra computa t ion  time. We have also decided to contract  
the two chlorine Gaussian functions in order  to decrease the M C S C F  computa t ion  
time, which is very sensitive to the size o f  the basis set. 

The polar izat ion in t roduced in this way ( - 1  eV) leads to an increase of  the 
M C S C F  time of  a factor  of  three with respect to the reference calculation 
performed without  polarizat ion orbital. 

Finally, in Table 2 we present the parameters  o f  the d-polar izat ion orbitals for 
O, N and CI atoms, opt imized on the C10, NC1, HC1 and HC1 + molecules.  For  
the chlorine atom, we compare  the results o f  the opt imizat ion carried out  on the 
C10, HC1 and HC1 + molecules;  as can be seen, the parameters  of  these orbitals 
are very close. Moreover ,  the energy dependence  o f  these parameters  is very 
slight. Therefore,  we obtain the usual result that  the polarizat ion functions are 
not very sensitive to the chemical environment  of  the a tom on which these 
functions are centered. We can thus consider these orbitals as transferable. This 
transferabili ty is achieved even in the case where charge transfers occur,  as for 
instance when going f rom HC1 to HC1 +. Indeed,  we observe a lowering of  the 
equilibrium energy of  HC1 + of  only 0.02 eV by optimizing the 3d orbital on HC1 + 
itself in place o f  HC1. Hencefor th ,  it is the orbital optimized on C10 that will be 
used in further  calculations. 

5.2. Internal correlation energy 

As a consequence  o f  the definition in t roduced in Sect. 2, the internal correlat ion 
energy (EIoRR) of  an a tom or a molecule is obtained by diagonal isat ion of  the 
Hamil tonian  in the configurational  space spanned by all the mono  and biexcita- 
tions within the so-called "valence-space"  with respect to a given reference (the 
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zeroth-order wavefunction). The internal correlation energy corresponds to the 
near-degeneracy energy of orbitals belonging to the same shell (i.e. orbitals 2s 
and 2p for the shell n = 2  of second row atoms). For third row atoms, the 
near-degeneracy complex (Layzer complex) n = 3 contains the orbital 3s, 3p and 
3d so that it is also necessary to optimize 3d correlation orbitals if one wishes 
to calculate the internal correlation energy of these atoms as well as that of  the 
molecules of which they are part. The optimization of the correlation orbital is 
carried out in the same manner  as it was for the polarization orbital (see Sect. 5.1). 

This orbital added to the completely contracted set [ 12] will provide the minimal 
basis set required for this step of the calculation. 

5.2.1. Molecular optimization of a 3d correlation orbital 

The 3d-correlation orbitals have been optimized by minimizing the energy corre- 
sponding to the CI calculation performed on the internal correlation configur- 
ational space. Test calculations have been carried out on the ground 2H state of 
the CIO molecule, near its equilibrium geometry. However, since we don' t  have 
any reference value for the internal correlation energy of the CIO molecule, we 
calculated with the same basis set, for each optimized correlation orbital, the 
internal correlation energy of the chlorine atom in the ground 2p state. 

This value was compared with the very accurate result obtained by means of a 
numerical M C H F  calculation performed on the whole near-degeneracy complex 
of the atom, in order to test the quality of  the optimized correlation orbital. 

In Table 3 and in Fig. 1 we present the evolution of the internal correlation 
energy of the chlorine atom calculated in the minimal basis set (MB) as a function 
of the quality of  the 3d correlation orbital optimized on the C10 molecule. One 
can see that if this orbital is represented with the help of  one Gaussian primitive 
(MB4), we can already calculate 90% of the reference (numerical) value. Similarly 
to what was done for the polarization orbital, we optimized a correlation orbital 
formed by a contraction of two Gaussian primitives (MB5). It only leads to a 
slight relative improvement  ( - 4 % )  of the calculated internal correlation energy 
of the chlorine atom, but it lowers the absolute value by an amount  of  0.1 eV, 
what is appreciable. We consider this final result as very satisfying and admit 
that the internal correlation energy of the C10 molecule is similarly approached,  
as suggested by the parallel evolution of the internal correlation energy of C1 
and C10 along with the quality of the optimized correlation orbital illustrated in 
Fig. 1. 

There are also two other correlation orbitals for the chlorine atom presented. 
The first one (MB2) is an attempt to obtain such an orbital by using the option 
for basis set optimization of PSATOM. The method would have the advantage 
of very easily giving a correlation orbital without performing CI calculations. 
Since no 3d orbital is occupied in the ground state configuration of the chlorine 
atom, we arbitrarily decided to perform the calculation on the 4F state of the 
KL3sZ3p43d configuration. The very bad result obtained when we tried to 
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Fig. 1. Evolution of the internal correlation energy of CI and CIO as a function of the quality of the 
3d correlation orbital 

Table 3. Calculated internal correlation energy (a.u.) of the chlorine atom as a function of the quality 
of the 3d correlation orbital 

Minimal basis set Characteristic of the 
(MB)" d correlation orbital b EIoRRCI(2p) % 

MB1 without d 0.0000 0.0 
MB2 atomic SCF 0.0002 0.2 
MB3 polarization 0.0864 84.0 
MB4 correlation (ng = 1) 0.0928 90.0 
MB5 correlation (ng = 2) 0.0963 94.0 
MCHF numerical 0.1026 100.0 

a Same notations as in Fig. 1 

b See comments in the text 

c a l c u l a t e  t h e  i n t e r n a l  c o r r e l a t i o n  e n e r g y  o f  t h e  c h l o r i n e  a t o m  w i t h  t h i s  o r b i t a l  

was  p r e d i c t a b l e  b e c a u s e  o f  t h e  w e l l - k n o w n  d i f f e r e n c e  b e t w e e n  S C F  a n d  c o r r e l a -  

t i o n  o r b i t a l s .  T h e  s e c o n d  o n e  ( M B 3 )  is j u s t  t h e  p o l a r i z a t i o n  o r b i t a l  d i s c u s s e d  in  

Sect .  5.1 w h i c h  g ives  a r e a s o n a b l e  a p p r o x i m a t i o n  o f  t h e  i n t e r n a l  c o r r e l a t i o n  
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energy of the atom due to the relative similarity that exists between SCF polariz- 
ation and correlation orbitals [22]. 

We can conclude that we are able to obtain with MB5 a reliable molecular 
correlation orbital. However  such a CI optimization on each molecule studied 
is long and expensive so that it would be very interesting to obtain a correlation 
orbital " transferable" i.e. usable in each molecular calculation without particular 
optimization. 

5.2.2. Optimization of a transferable correlation orbital 

By performing an atomic CI calculation we optimized in a first step a correlation 
orbital for the 2p state of the chlorine atom. In a second step, we calculated with 
this orbital the internal correlation energy of the C10, HC1 and HCI + molecules 
and compared the values obtained therefrom with the ones obtained using the 
correlation orbital specifically optimized for these molecules. 

The results of  the calculations are presented in Table 4 where we indicate in the 
first column the molecule or atom whose internal correlation energy is calculated, 
in the second column the system on which the correlation orbital was optimized 
and finally in the third column the value (in a.u.) of  the internal correlation energy. 

For the HC1 and C10 molecules, the perfect agreement between the values of  
the internal correlation energy calculated with both kinds of correlation orbitals, 
the ones optimized for the molecule and the one optimized for the atom, demon- 
strates the transferability of  the latter. 

Let us now turn to the results concerning the CI + and HC1 + ions. The comparison 
between the internal correlation energy of  C1 + and HC1 + calculated using a 
correlation orbital optimized on these species on the one hand and on C1 on the 
other hand shows that i) the correlation orbital optimized on C1 is relatively 
inadequate to calculate the internal correlation energy of the ionic species C1 + 
and HCI +. For instance, for CI + we can only calculate 82% of the reference value 
obtained through a numerical M C H F  calculation; ii) an optimization on C1 + 

Table  4. Test  o f  the t ransferab i l i ty  of  3d  corre la t ion  orbi ta l  

Op t imiza t ion  
Molecu le  on E~oRR(a.u.  ) 

CIO R =3 .8  a.u. C1 0.1335 

C10 0.1335 
HC1 R = 2.4 a.u. CI 0.1005 

HC1 0.1005 
HCI  + R = 3.5 a.u. CI 0.0906 

C1 + 0.0985 

HC1 + 0.0988 
C1 + CI 0.08 t 1 

CI + 0.0929 

- -  0.0984 ( M C H F )  
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Table 5. Parameters of the optimized 3d correlation func- 
tions 

System El ~r cl" c2 ~ 

CI 0.60 0.30 1.0 0.40 
CIO 0.60 0.30 1.0 0,45 
HC1 0.60 0.30 1.0 0.40 
CI + 0.85 0.26 1.0 0.65 
HC1-- 0.91 0.31 1.0 0.72 

The contraction coefficients are given for the unnormalized 
orbitals 

leads to a correlation orbital that allows us to calculate 94% of the reference 
value for the internal correlation energy of C1 + and moreover, the comparison 
between the internal correlation energy of HC1 + calculated with this orbital and 
with the one optimized on HC1 + itself shows that it is perfectly transferable. We 
then possess 3 d correlation orbitals that can be involved without reoptimization 
in calculations on chlorinated molecules or molecular ions. 

Finally, in Table 5 we present the optimized 3d correlation orbitals for CI(2p), 
CI*(3P), C10(211), HCI(J~ +) and HCI+(2I-I). The great similarity between the 
correlation orbitals optimized on C1, C10 and HC1 on the one hand and on HC1 + 
and C1 + on the other hand reflects the results of Table 4. 

5.3. Non-internal correlation energy 

The extension of the "atoms-in-molecule" method to molecules containing third 
row atoms requires a detailed investigation of the two following points: first, the 

effect of the inclusion of an additional valence orbital (3d orbital) in the atomic 
expansion of the zeroth-order wavefunction and secondly the tabulation of the 
necessary semi-empirical atomic data. This last point implies the consideration 
of a new concept, the error energy, introduced in a previous paper [6] and 
discussed in detail hereafter. 

5.3.1. Atomic expansion of the zeroth-order wavefunction 

The addition o f a  3d orbital in the H.F. sea, in addition to the 3s and 3p orbitals, 
substantially increases the number of possible "atoms-in-molecule" structures 
that arise from the expansion of the zeroth-order wavefunction. Typically, for a 
second row atom the K2sm2p" configurations (with m = 0  to 2 and n = 0  to 6) 
can lead to only 256 (L, S, ML, Ms) eigenstates whereas for third row atoms with 
KL3sm3p"3d ~ configurations (with l = 0  to 10) this number becomes 262144. 
Obviously, the computation time involved in the "atoms-in-molecule" procedure 
grows significantly with the size of the atomic eigenfunctions space. In fact one 
of the most time consuming steps in this procedure is certainly/he linear transfor- 
mation that projects the cartesian atomic determinants basis set to the LS eigen- 
functions basis set. 
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However, we think that this extra computation time can be saved without loss 
of reliability, by neglecting in the expansion the contributions of  determinants 
in which 3d orbitals are occupied. In fact, the neglect of these contributions can 
be expected to be small as a consequence of the small occupation probability of  
the 3d orbitals in the molecular zeroth-order wavefunctions. 

As an example,  for the C10 molecule (R = 2.7 a.u.) only 6% of the chlorine atom 
contributions correspond to KL 3 s m 3p" 3 d i structures (with l ~ 0), of  which - 5 % 
is equally distributed on the KL 3s23p33d and KL 3s23p43d configurations, 0.3% 
on the KL 3s23p23d configuration and less than 0.05% on the other ones. However 
it is important to point out that the approximation we just introduced is not to 
completely neglect the 3d-contributions to the non-internal correlation energy. 
Indeed, two types of  3d-contributions occur: i) semi-internal ones which consist 
in the biexcitation of one 3s or 3p electron to a 3d orbital and a second electron 
to a non-valence orbital, ii) all-external ones in which the two electrons involved 
in the biexcitations (3d + 3s, 3d + 3p or two 3d electrons) shift to the non-valence 
space. 

The first contributions are not neglected here and in fact are taken into account 
by a part of  the non-internal correlation energies of  the KL 3sm3p" configurations. 
These contributions are expected to be important as a consequence of the strong 
interactions that exist between the 3s, 3p and 3d near-degenerated orbitals. 
Moreover the considered configurations are also expected to significantly con- 
tribute to the zeroth-order wavefunction expansion. It is the all-external contribu- 
tions that we neglect, because they arise from configurations KL 3sm3p~3d I which 
are, as mentioned above, not significantly occupied in the expansion of the 
zeroth-order wavefunction. 

The numerical incidence of the neglect of these 3d-occupied configurations on 
the non-internal correlation energies has been estimated to be less than 0.1 eV, 
this uncertainty lying within the numerical accuracy of the method. 

5.3.2. Semi-empirical atomic data 

The determination of the semi-empirical atomic data required for the calculation 
of the "atoms-in-molecule" correlation energies will be discussed in the next 
sections. It consists in the calculation of the non-internal correlation energies 

EHF 

I E~ORR 
ECORR t 

E C~ORR 

EMCHF 

EE 

Fig. 2. Definition of non-internal correlation energy E~L 
and error energy ~ EEX 
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corresponding to all the'possible LS states arising from the neutral and ionic 
configurations of the considered atoms. As illustrated in Fig. 2, each of these 
calculations requires the knowledge of the corresponding internal correlation 
energy and of the exact non relativistic energy. These two energy components will 
successively retain our attention. 

5.3.3. Atomic internal correlation energies calculations 

By performing numerical MCHF calculations, we calculated the internal correla- 
tion energy for the states arising from neutral and ionic configurations of the 
chlorine atom. 

The internal correlation energy of a given LS state resulting from a configuration 
F is defined as: 

E~ORR(FLS) = EMc.F(FLS)  - E . F ( F L S )  

where EMCHF is the energy associated to the wavefunction: 

'I 'Mc-F(FLS)= Y ciq)(7,LS) (2) 
complex 

where the summation goes over all the CSF's (q~(3'iLS)) pertaining to the Layzer 
complex. 

The results of the calculations are presented in Table 6. In a few cases, marked 
by an asterisk, very strong interactions occur in the MCHF calculations between 
two or three CSF's. As a consequence, we cannot say that the wavefunction (2) 
represents the internal correlation wavefunction of one given FLS state, the 
representation of an atomic state by one main configuration losing its sense. Let 
us take the following example. For the 2S state arising from the KL3s3p 6 
configuration of C1, the Layzer complex is formed by six CSF's. Two of them, 

~(Yl 2S) = IKL 3s(ZS)3p6(tS) ; 2S) (3a) 

d~(y 22S) = [KL 3s2(1S)3p4(lD){lD}3dl(2D);  2S) (3b) 

strongly interact and the diagonalization of the MCHF matrix gives for the first 
two roots and taking only into account the main weights: 

~McuF(F~ 2S) - 0.802734qb(3'12S) + 0.572659qb(3'22S) (4a) 

~c~2(F2 2S) -~ 0.544424cb (3'12S) - 0.794771 qb(3,22S). (4b) 

So that following Kaufman [23], we should talk about the states (~_) and (+_) 
instead of the states ~(3't 2S) and ~(72 2S). 

The associated energies are: 

EMcHF(F1 2S) = -459.1741 a.u. 

EcI(F2 2S) = -458.7146 a.u. 

2 This function is the second eigenvector of the interaction matrix constructed with the orbitals 
optimized for the F I 2S state and hence cannot be a MC solution for the F 22S state 
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Table 6. Atomic data for the chlorine atom (a.u.) 
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I Configuration State System --EEX p - -EHF --EMcHF - - E c o R R  - E  E 

KL 3s23p 6 1S C1- 4 6 1 . 5 2 1 4  459 .5769  459 .6778  0 . 1 0 0 9  1.844 
3s23p5 2p C1 4 6 1 . 3 8 7 2  459 .4821 459 .5847  0 . 1 0 2 6  1.802 
3s~3p4 3p C1 + 4 6 0 . 9 1 0 5  459 .0486  459 .1470  0 . 0 9 8 4  1.763 

1D 460.8589 458 .9845  459 .0867  0 . 1 0 2 2  1.772 
1S 460.7850 458 .8892  458 .9719  0 , 0 8 2 7  1.813 

3s23p 3 4S C1 z+ 460 .0369  458 .2265  458 .3067 0 . 0 8 0 2  1.730 
2D 459.9544 458 .1227  458 .2176  0 . 0 9 4 9  1.737 
2p 459.9007 458 .0543 458 .1334  0.0791 1.767 

3s23p ~ ~P CI 3+ 458 .4328  456 .7889  456 .8618  0.0729 1.571 
tD 458.5184 456 .7160  456 .7916  0 . 0 7 5 6  1.727 
~S 458.5770 456 .6082  456 .6573 0 .0 4 9 1  1.920 

3sZ3p 2p 456.6117 454 .8616  454 .9080  0 . 0 4 6 4  1.704 
3s z 1S 454.1239 452 .4098  452 .4677  0 . 0 5 7 9  1.656 
3s3p 6 zS C1 460.978 a 458 .9168  459.0231 ~ 0 .1063  1.954 
3s3p5 3p C1 + 460.4851 ~ 458,5227 458.6132 a 0 .0905  1.872 

~P 460.205 ~ 458 ,2746  458.2893 ~ 0 .0147  1.916 
3s3p4 4p C12+ 459 .5863  457 .7479  457 .8620  0 . 1 1 4 1  1.724 

2D - -  (1.84) 
2p __ (1.96) 
2S - -  (1.72) 

KL 3s3p 3 sS CI 3+ 458 .2849  456 .5503 456 .5771 0 . 0 2 6 8  1.708 
3D 458.1126 456 .3005  456 .4183 0 . 1 1 7 8  1.694 
~P 458.0331 456 .2278  4563332 0 . 1 0 5 4  1.700 
aS 457.8306 455 ,9975  456 .1109  0 . 1 1 3 4  1.720 
ID 457.9918 ~ 456.0259 456.1131 ~ 0 .0872 (1.72) 
~P 457.8214 455 .9543 456~0849 0 . 1 3 0 6  1.736 

3s3p2 2p C14§ 455 .8937  454 .1190  454 .2096  0 . 0 9 0 6  1.684 
4p 456.2204 454 .5497  454 .5668  0.0171 1.654 
2D 456.1001 454 .3 2 8 4  454 .4312  0 . 1 0 2 8  1.669 
2S 455.9481 454 .2149  454 .2651 0 . 0 5 0 2  1.683 

3s3p 3p CI 5+ 453 .6715  452 .0207  452 .0289  0 . 0 0 8 2  1.643 
1p 453.4452 451 .7239  451 .7852  0 . 0 6 1 3  1.660 

3s 2S CI 6+ 450 .5580  448.9302 - -  0.0000 1.628 
3s ~ ~S Ct 7+ 446.36/4 444.7644 - -  0.0000 1.597 

See text (Sect. 5,3.3) 

I n v e r s i n g  Eqs .  (4a) a n d  (4b)  a n d  m a k i n g  a L g w d i n  o r t h o n o r m a l i z a t i o n  3 we  o b t a i n :  

qb(y~ 2 S ) =  0.819514q~(F,  2S)+  0.573059~F(F2 2S) 

~(Y2 2S) = 0-573059gr(Fl  2 S ) - 0 . 8 1 9 5 1 4 W ( F 2  2S) 

a n d  f ina l ly  t h e  r e q u e s t e d  ene rg i e s  

E ( y l  2S) = -459 .0231  a.u. 

E( 'y2 2S) = - 4 5 8 . 8 6 5 4  a.u. 

3 This orthonormalization is imposed by the neglect of the 4 remaining CSF's 
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so that the approximate internal correlation energy of the qb(yl 2S) state is 

E(yl  2S) -  EHF(Yl 2S)=-459.0231 +458.9168 =-0 .1063 a.u. 

The calculation of the internal correlation energy of three other states, 
KL 3s3p3(ID), KL 3s3pS(3P) and KL 3s3p5(1p) also exhibited strong interactions 
between CSF's. 

In the first two cases we proceeded in the same way as we had done for the 
KL 3s3p6(2S) state. Unfortunately, in the third case, the MCHF calculation did 
not converge and so we had to resolve the problem by means of a CI calculation 
performed with the orbitals of a EAV calculation of the three interacting CSF's. 

5.3.4. Atomic exact non-relativistic energies and error energies 

For the chlorine atom (Z = 17) and its ions considered here (N = 18 to 14), no 
values for exact non-relativistic energies (E NR) are available since the tables of 
Scherr et al. [24] (SSM) are limited to Z = 20 and N = 10. Consequently, we tried 
to obtain such values through the relation 

NR EEx = EEX - ERI~L (5) 

using the recent experimental energies (Ezx) of Bashkin and Stoner [25] and 
evaluating the relativistic energies (EREL) by 

EREL = EcHF--  EtfF (6) 

EcHF 4 being the total (relativistic) energies of Fraga et al. [26]. Afterwards, using 
the internal correlation energy values (E1oRR) of Verhaegen and Moser [27a], 

( E c o R R )  f o r  t h e  we calculated, as a test, the non-internal correlation energies r~ 
C(3p) isoelectronic series according to the relation 

NI -- NR I 
-- ECORR. ECORR -- EEX -- EHF (7) 

As can be seen from Table 7, those NI NI ECORR values (E CORR(1)), even approximately 
(EcoRR(2)), exhibit an incorrect behavior as Z corrected for lamb-shift (LS) NI 

increases i.e. decrease for large Z instead of reaching a constant value. 

NI Oppositely, the ECORR values (EcN~RR(3)) used previously [27] and based on the 
SSM NR Ezx  values exhibit a correct Z-dependancy, even for Z-> 10. It seems thus 

E EX values is more that the experimental fitting performed by SSM to obtain NR 
appropriate than the direct ab initio determination of the relativistic contributions 
(relations (5) and (6)). 

In order to avoid the difficulty of calculating reliable total relativistic corrections 
and hence reliable NR EEX values, we propose to transfer in the molecule not only 
the atomic non-internal correlation energies but also the atomic experimental 
relativistic energies leading (see Fig. 2) to the definition of a new concept, the 
error energy (EE) 

NI EE = E C O R R +  EREL -- EEX -- EMCHF (8)  

4 "cHF" stands for "corrected Hartree-Fock'" 
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Table 7. Z dependence of non-internal correlation energy for C(3p) isoelectronic sequence (a.u.) 

ls22s22p2(3p) Z --EEx _EoHF LS a _EcoRRI _EcoRR(I)NI _EcoRR(2)NI _EcoRR(3)NI 

C I 6 37.8574 37.7007 0.0014 0.0173 0.1394 0.1408 0.139 
NlI 7 54.0795 53.9138 0.0025 0.0216 0.1441 0.1466 0.145 
O m 8 73.3204 73.1485 0.0040 0.0253 0.1466 0.1506 0.149 
F TM 9 95.5771 95.4023 0.0060 0.0287 0.1461 0.1521 0.153 
Ne v 10 120.8517 120.6763 0.0086 0.0320 0.1434 0.1520 0.156 
Mg TM 12 180.4658 180.2965 0.0158 0.0385 0.1308 0.1466 0.161 
Si TM 14 252.1969 252.0423 0.0259 0.0448 0.1098 0.1357 0.165 
pX 15 292.6218 292.4757 0.0321 0.0481 0.0980 0.1301 0,166 

a Approximate lamb shift values [27] 

which can be easily evaluated provided that EEX values are available. The 
underlying hypothesis is that relativistic energies are transferable for Z < 20 which 
is a reasonable hypothesis [10a]. The establishment of EE tables according to 
relation (8) will be discussed in the next section. Finally, in Table 8 we compare 
the contribution of E NIRR and E E to the dissociation of some molecules containing 
second row atoms. The perfect agreement observed shows the consistency of the 

NI new semi-empirical data tables ( E E )  with those used up till n o w  ( E c o R R ) .  

Fig. 3 gives a complementary illustration of this consistency by showing the quite 
parallel variation of error and non-internal correlation energies, calculated at a 
fixed value Z = 10, as a function of the electron number. This parallelism shows 
also clearly that the relativistic contributions ERE L are  independent of the occupa- 
tion number of  the 2p electrons and only slightly dependent on the number of 
2s electrons (see the variation from 2 to 4 electrons in the figure) and the reason 
why therefore the transferability of the relativistic contributions is plausible. The 

Table 8. Comparison of E ~ R r  ~ and E E contribution to the 
dissociation energy of some molecules containing second 
row atoms (eV) 

Dissociation process AECoRRNI AE E 

He ~ 2H 0.53 0.54 
N 2 ~ 2 N  1.19 1.I7 
O 2 ~ 2 0  0.35 0.36 
F2~2F  0.13 0.10 
H20 ~ H 2 + O 0.66 0.66 
NO--> N + O  0.795 0.78 
CO--> C + O  0.84 0.85 
C2 ~ 2C 0.74 0.75 
C O 2 ~ C O + O  0.585 0.58 
C N ~ C + N  1.15 1.14 
CO2 ~ C + 20 1.43 1.43 
H 2 0 ~  O + 2 H  1.19 1.20 
H C N ~  H + C N  0.87 0.89 
HCN ~ H + C + N 2.02 2.03 
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- 0.6 E (la.u.)l I I I I I I I 
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electron number 

Fig.  3. V a r i a t i o n  o f  n o n - i n t e r n a l  c o r r e l a t i o n  e n e r g i e s  a n d  e r ro r  e n e r g i e s  as  a f u n c t i o n  o f  e l e c t r o n  
n u m b e r  ( a t  Z = 10) 

Z = 10 value has been chosen for that illustration as the greatest Z value for which 
the 2s and 2p electrons are effective valence electrons. Obviously the same 
parallelism is not observed for larger values of  Z as a consequence of the 
importance of the relativistic effects of the inner shells in the corresponding 
atoms. However,  such cases are not encountered within the chemical applications 
area we usually consider. 

5.3.5. New atomic semi-empirical data tables 

Error energy tEE) tables were constructed according to relation (8) (Sect. 5.3.4) 
where EEX for a LS state arising from a configuration F with N electrons was 
explicitly calculated as 

N 

EEx(FLS, N) = - Y. I(F 'L'S 'J~ . . . .  d; n)-t 
n = l  

Y, (2J+ 1)T~(FLSJ; N) 
J 

2 (2J+ 1) 
J 

where the ionization potentials ( I )  of the lower J '  state of  the F' configuration 
with n electrons and the terms (Te) of the J states were taken from Bashkin and 
Stoner (BS) Grotian diagrams [25]. 

i) Second row atoms. Results of  Ez are presented in Tables 9, 10 and 11 for all 
states arising from the configurations ls22s"2p m (n = 0, 1, 2; m = 0 to 6). Several 
values (indicated in parentheses) were extrapolated or interpolated due to the 
lack of experimental data. As a consequence, the use of  EE values derived above 
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a l lows  us to  e s t ima te  s o m e  miss ing  t e r m  ene rg ie s  in BS 's  tab les .  I t  s h o u l d  be  

p o i n t e d  o u t  tha t  the  e r ro r  l imits  on  these  e s t i m a t i o n s  d e p e n d  o n l y  on  the  qua l i t y  

o f  the  EE e x t r a p o l a t i o n  so tha t  fo r  h igh  t e r m  va lues ,  the  r e l a t ive  u n c e r t a i n t y  is 

ve ry  sma l l  ( < 0 . 0 5 % ) .  T h e  resul ts  fo r  e s t i m a t e d  t e rms  are  p r e s e n t e d  in T a b l e  12 

a n d  c o m p a r e d  wi th  t h o s e  f r o m  V e r h a e g e n  a n d  M o s e r  (VM)  [27a] p r o c e e d i n g  

f r o m  s imi l a r  e x t r a p o l a t i o n s  o f  E ~ R R  v a l u e s ;  m o s t  o f  the  t i m e  a n ice  a g r e e m e n t  

is o b s e r v e d  b e t w e e n  b o t h  resul ts .  

M o r e o v e r ,  t he  t e r m  ene rg ie s  fo r  the  s tates  l s22p 4 ID (at  Z =  11) a n d  1S (at Z = 14) 

p r e s e n t e d  h e r e  as we l l  as t h o s e  p r e v i o u s l y  e s t i m a t e d  by  V M  are  in c o m p l e t e  

d i s a g r e e m e n t  wi th  BS 's  va lues .  This  d i s a g r e e m e n t  c o u l d  resul t  f r o m  an i n c o r r e c t  

a s s i g n m e n t  o f  the  s p e c t r o s c o p i c  s tates  in BS ' s  tab les .  

Table 10. Error energies for states arising from l s a 2 s 2 p  n configurations (a.u.) ( ): Interpolated or 
extrapolated value 

Z Li(2S) Be(3p) Be(~P) B(4p) B(2D) B(2S)  B(2P)  C(5S) C(3D) C(sp) 

3 0.046 
4 0.049 0 . 0 5 8  0.081 
5 0.054 0 . 0 6 4  0 . 1 0 7  0 . 0 7 8  0 . 1 3 0  0 . 1 2 2  0.150 
6 0.062 0 . 0 7 3  0.120 0 . 0 8 7  0 . 1 3 9  0 . 1 3 9  0.159 
7 0.074 0 . 0 8 7  0 . 1 3 6  0 .101  0 . 1 5 4  0 . 1 4 9  0.176 
8 0.094 0 . 1 0 7  0 . 1 5 7  0 . 1 2 2  0 . 1 7 6  0.170 0.199 
9 0.123 0 . 1 3 7  0 . 1 8 9  0 . 1 5 4  0 . 2 0 8  0 . 2 0 1  0.232 

10 0.164 0 . 1 8 0  0 . 2 3 2  0 . 1 9 8  0 . 2 5 3  0 . 2 4 5  0.277 
11 0.222 0 . 2 3 9  0.292 0 . 2 6 3  0 . 3 1 5  0 . 3 0 7  0.339 
12 0.299 0 . 3 1 7  0 . 3 6 8  0 . 3 3 5  0 . 3 9 3  0 . 3 8 6  0.4.18 
13 0.399 0.4t8 0 . 4 7 0  0 . 4 3 9  0 . 4 9 9  0 . 4 9 3  0.523 
14 0.527 0 . 5 4 9  0 . 5 9 9  0 . 5 7 4  0 . 6 3 4  0 . 6 2 7  0.658 
15 0.687 0 . 7 0 8  0 . 7 6 0  0 . 7 4 6  0 . 8 0 2  0 . 7 9 9  0.829 
16 0.886 
17 1.127 

0.105 0 .171  0.177 
0.121 0 . 1 8 6  0.187 
0.141 0 . 2 0 8  0.208 
0.172 0 . 2 4 0  0.238 
0.214 0 . 2 8 4  0.281 
0.275 0 . 3 4 6  0.343 
0.355 0 . 4 2 6  0.422 
0.466 0.534 0.529 
0.605 0 . 6 7 3  0.667 
0.786 0 .851  0.843 

Z c(ss) C(1D) C(~P) N(4p) N(2D) N(2s) N(2p) O(3p) O(~p) F(2S) 

3 
4 
5 
6 0.233 0 . 2 4 2  0 .196  (0.218) (0.266) (0.278) (0.305) 
7 0.221 0.244 0 .219  (0.227) (0.277) (0.284) (0.314) 
8 0.244 0.264 0 . 2 5 7  0 . 2 4 6  0 . 2 9 8  0 . 2 9 7  0.332 
9 0.276 0 . 2 9 5  0 . 2 8 7  0 . 2 7 6  0 . 3 2 8  0.322 0.361 

10 0.321 0 . 3 3 9  0 . 3 3 1  0 . 3 1 7  0 .371  0 . 3 6 3  0.400 
11 0.384 0 . 4 0 2  0.394 0 . 3 7 7  0 . 4 2 9  0 .421  0.458 
12 0.465 0 . 4 8 2  0 . 4 7 3  0 .451  0 . 5 0 8  0 . 4 9 9  0.537 
13 0.572 0 . 5 8 9  0 . 5 8 1  0 .561  0 . 6 1 5  0 . 6 0 6  0.644 
14 0.711 0 . 7 2 7  0 . 7 1 8  0 . 7 0 0  0 . 7 6 2  0.754 0.790 
15 0.890 0 . 9 0 4  0 . 8 9 3  0 . 8 7 8  0 . 9 4 2  0 . 9 3 9  0.970 
16 1.100 1 .152  1 . 1 4 4  1.178 
17 1.374 1 .417  t.410 1.440 

(0.329) (0.355) (0.456) 
(0.337) (0.368) (0.463) 
0.354 (0.391) (0.479) 
0.383 0.424 0.504 
0.423 0 . 4 8 3  0.538 
0.484 0 .541  0.594 
0.563 0 . 6 1 9  0.670 
0.669 0 . 7 2 5  0.772 
0.806 0 . 8 6 2  0.906 
0.981 1.036 1.078 
1.199 1.254 1.291 
1.469 1 . 5 3 9  1.556 
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ii) Chlorine atom. The /~E values for chlorine atom presented in Table 6 were 
obtained exactly in the same way as those for second row atoms. However, several 
remarks should be made concerning this Table. 

First, for the configurations KL3pn(n = 1 to 6) no experimental energies are 
available in BS's tables. Since we did not, up till now, systematically calculate 
EE values for KL 3sn3p " configurations at various Z values, no extrapolation 
or interpolation is possible. Consequently the corresponding EE values were set 
to zero in the molecular calculations. In fact their contributions to the molecular 
error energy are expected to be negligible, their weights in the decomposition of 
the zeroth-order wavefunction being very small (for instance << 10 -6  for C10). 
Secondly, for the states 2D, 2p, 2 S arising from the configuration KL 3s3p 4 no 
experimental energies are available either. Consequently, the EE values were 
estimated with respect to the corresponding EE values in Argon (Z = 18). 

Finally for the KL 3s3p3(ID), KL3s3pS(1P, 3p)  and KL 3s3p6(2S) states which 
are in fact far from being pure states, transformations using MC coefficients 

Table 12. Addenda to Bashkin and Stoner tables 

re (cm-l )  a r e (cm-1) a r e (cm -1) 
z Conf. State this work VM BS 

5 ls22p 3 ZD (97500) (97350) 
2p (109500) (105440) 

6 ls22p 4 3p (154700) (155170) 
~D (159500) (159740) 
~S (184800) (185420) 

7 1sz2p 4 3p (219400) (219820) 
1D (229100) (229280) 
1S (264400) (265270) 

ls22p3 2p (232000) (235380) 
lsZ2s2p4 4p (87500) 

ZD (121400) (120880) 
zS (141900) (159840) 
2p (157200) (157090) 

8 ls22p 5 ~P (316600) (318530) 
lsZ2s2p6 1p (183500) 

10 lsZ2p z 1D 317700• 200 317600• 
1S 393300• 392800i200 

lsZ2p 4 1D 436600• 436600• 300 
~S 500500• 200 501000• 300 

11 lsZ2p 4 aD 506200• 200 506200• 
14 lsZ2p 4 JS 819800• 200 818100• 
15 ls22p 4 3p 743900• 742700• 

~D 791200• 789100• 
~S 900500• 898800• 1100 

539430 
669562 

a Terms indicated in parentheses are "uncertain" as a consequence of the delicate extrapolations 
performed at low Z values (see Ref. [27a]) 
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d i scussed  in Sect. 5.3.3 were  used  to connect  the expe r imen ta l  energies ,  EEX(~) ,  
to the m o n o c o n f i g u r a t i o n a l  energies  EEx(qb) used  to ca lcula te  EE. 

6. Conclusion 

In this work,  we have p resen ted  an ex tens ion  of  an economica l  me thod  of  
ca lcu la t ion  o f  the  mo lecu l a r  cor re la t ion  energy,  d e v e l o p e d  in p rev ious  work. 
The ex tens ion  concerns  the app l i cab i l i ty  o f  the  me thod  to th i rd  row a toms  and 
an analysis  o f  its consequences  at the three  levels o f  energy par t i t ion ,  i.e. the 
ze ro th -o rde r  energy,  the  in ternal  and  the non- in te rna l  cor re la t ion  energies.  The 
pa r t i cu la r  po in t s  that  have  been  inves t iga ted  are: the op t imiza t ion  o f  po la r i za t ion  
and  cor re la t ion  3d  orbi ta ls ,  the influence o f  these  3d  orbi ta ls  on the "a toms- in -  
mo lecu l e "  expans ion  o f  the ze ro th -order  wavefunc t ion  and  the de t e rmina t i on  o f  
the r equ i red  a tomic  semi-empi r ica l  da t a  toge ther  with the def ini t ion o f  the  new 
concept :  the  error  energy.  Direct  semi -empi r ica l  tables  o f  er ror  energies  were 
de t e rmined  wi thou t  having  to in t roduce  the ar tefact  o f  an a p p r o x i m a t e  ex t rac t ion  
o f  the re la t iv is t ic  con t r ibu t ions  f rom the expe r imen ta l  energies.  

In  this pape r ,  the chlor ine  a tom has been  chosen  as a test  for  the  above  me thodo-  
logical  advances .  M o l e c u l a r  app l i ca t ions  devo ted  to the C10, HC1, HC1 + and  
NC1 molecu les  are p re sen ted  in a second  paper ,  in which  it is shown that  the 
economica l  fea tures  and  the re l iabi l i ty  o f  the  m e t h o d  are preserved.  However ,  

all the conc lus ions  p resen ted  here may  be ex t ended  to any o ther  th i rd  row a tom 
so that  m a n y  app l i ca t ions  to molecules  con ta in ing  any th i rd  row a tom may  be 
expec ted  in the near  future.  
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